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Executive Summary 

Operating room (OR) scheduling in pediatric hospitals is challenging due to the high variability 

in surgery durations and the high cost of OR time. Even a small prediction error can lead to 

significant inefficiencies: overestimation of case length leads to idle OR time, while 

underestimation causes delays and overtime. This research addresses the problem by developing 

a data-driven model to predict pediatric surgery durations more accurately than the current 

scheduling estimates. We compiled a comprehensive dataset of pediatric surgical cases from a 

children’s hospital, including numerous features related to the patient, procedure, surgical team, 

timing, and historical case durations. We then applied and compared multiple modeling 

approaches, ranging from simple linear regression to advanced machine learning algorithms such 

as ensemble decision trees. 

Our results show that machine learning can substantially improve prediction accuracy for 

pediatric surgery times. In particular, a Light Gradient Boosting Machine (LightGBM) model 

achieved the best performance, significantly outperforming the hospital’s current Scheduled 

Duration estimates. The LightGBM model reduced both absolute error (in minutes) and relative 

error (percentage deviation) compared to the existing scheduling predictions. For example, the 

baseline scheduling estimates had a root-mean-square error (RMSE) on the order of tens of 

minutes (approximately 50 minutes) and a mean absolute percentage error (MAPE) over 40%. 

The LightGBM model was able to reduce these errors by a substantial margin (on the order of 

20% improvement in RMSE and a reduction of MAPE into the 30% range), indicating a far more 

reliable prediction of surgery length. 

Notably, the model’s improved accuracy can translate to better operational outcomes. More 

precise duration predictions enable more efficient OR scheduling – surgeons and staff can be 

scheduled with less downtime between cases, and the risk of overruns and delays is minimized. 

This means potential cost savings (given an estimated $62 per OR minute) and improved patient 

flow. The study also provided insights into which factors most influence pediatric surgery 

durations (such as historical case duration, surgical team experience, and patient characteristics), 

knowledge that can inform future scheduling and process improvements. In summary, this 

research demonstrates a successful application of machine learning to optimize pediatric surgical 

scheduling, with the LightGBM model offering a practical tool for predicting case durations and 

thereby improving operating room utilization and reducing costs. 

 

 

 

 

 

 

 

 



Research Motivation 

 

Efficient management of operating rooms is a critical concern for hospitals, especially in high-

demand specialties like pediatric surgery. The motivation for this research stems from two main 

challenges: the unpredictability of pediatric surgery lengths and the high cost associated with this 

uncertainty. Studies have shown that pediatric surgical case durations can vary widely even for 

similar procedures 

Such variability arises from numerous factors – patient condition, case complexity, surgical team 

differences, and unforeseen complications – making accurate estimation difficult. Yet, accurate 

estimates are vitally important: each minute of OR time costs around $62 on average. Thus, even 

modest scheduling inaccuracies can translate into significant financial cost and resource waste. 

 

In current practice, hospitals often rely on simplistic methods or clinician estimates to schedule 

surgeries. For example, a common approach is to use historical average durations for a given 

procedure type or to defer to a surgeon’s or anesthesiologist’s prediction of how long the case 

will take. However, these methods do not account for patient-specific or context-specific factors 

and often fail to capture the true variability in case duration 

In pediatric cases, the challenge is pronounced: children’s physiology and surgical complexity 

can vary dramatically, and teaching hospitals frequently involve rotating teams which can affect 

efficiency. Inaccurate case duration estimates can lead to two major issues in OR operations: 

• Excess Idle Time or Underutilization: If a surgery is scheduled with a duration longer 

than what actually occurs (a common practice to build in buffer time), the OR may sit 

idle until the next case. This underutilization means lost opportunity to treat additional 

patients and wasted staffing resources. 

• Delays and Overtime: Conversely, if a surgery runs longer than expected 

(underestimation), it can cascade delays to all subsequent cases scheduled that day. This 

results in surgeons and staff working overtime, increased patient wait times (including 

prolonged fasting for pediatric patients), and potential crowding or backup in pre-

operative and recovery areas. Such delays can cause stress for families and fatigue for 

medical staff, potentially increasing the risk of errors. 

These problems highlight why more accurate prediction of surgery durations is important. By 

improving estimation accuracy, a hospital can optimize its scheduling to reduce gaps and 

overruns, leading to better utilization of expensive OR time, cost savings, and improved patient 

and provider satisfaction. In the context of a children’s health system, better scheduling means 

more children can receive timely surgery and clinicians can adhere more closely to planned 

schedules. This motivation drove our research to explore advanced predictive modeling for 

pediatric surgery durations, moving beyond simple averages or subjective guesses to a data-

driven approach that can handle the complexity and variability inherent to these cases. 

 

 

 

 



Research Objective 

 

The primary objective of this research is to develop and evaluate a predictive model for pediatric 

surgery case duration (from “wheels-in” to “wheels-out” of the operating room). We aim to 

create a model that can forecast the length of a surgical procedure more accurately than the 

current scheduling method, thus providing a better foundation for planning and optimizing the 

daily surgical schedule. In pursuit of this goal, several specific sub-objectives were defined: 

• Identify Key Predictors: Determine which factors (patient characteristics, procedure 

details, provider/team information, etc.) are most relevant to predicting how long a 

surgery will take. Pediatric surgeries involve many potential variables – from the 

patient’s age and health status to the surgeon’s experience level – so part of our objective 

is to discover which of these variables have significant predictive power for case 

duration. By identifying these, we also gain clinical and operational insights into what 

drives longer or shorter surgeries. 

• Compare Prediction Models: Apply a range of predictive modeling approaches and 

compare their performance in forecasting surgery duration. We considered models across 

the spectrum of complexity – from interpretable linear models to more complex machine 

learning algorithms – to assess the trade-offs in accuracy and interpretability. The 

objective was not only to find the most accurate model, but also to understand how much 

benefit more complex models provide over simpler ones, and at what cost in terms of 

transparency or ease of use. This includes analyzing the trade-off between model 

performance and interpretability, which is important in a healthcare setting where trust 

and understanding of a model’s predictions by clinicians can be as important as raw 

accuracy. 

• Develop a Practical Tool for Scheduling: Ultimately, the end goal is to improve 

operating room scheduling efficiency. While our study’s scope focuses on the predictive 

aspect (i.e. estimating surgery durations), the long-term vision is to integrate this 

predictive model into the scheduling process. By doing so, surgical cases can be allocated 

to operating rooms and time slots with more realistic duration estimates, helping planners 

sequence surgeries and assign resources in a way that minimizes downtime and delays. 

Thus, our objective includes validating that the model’s predictions are robust and 

reliable enough to be used in practice and discussing how they could be utilized in an 

optimization or scheduling system. We also seek to provide recommendations on how the 

improved duration predictions might be employed by schedulers, for example in deciding 

case order or when to start cases, to achieve smoother daily OR operations. 

In summary, the research objective is to build a robust predictive model for pediatric surgery 

durations, understand the important factors influencing those durations, achieve improved 

accuracy over existing methods, and lay the groundwork for using these predictions to enhance 

surgical scheduling and resource allocation at children’s hospitals. 

 

 

 



Research Methodology 

To address the objectives, we followed a structured methodology consisting of data collection 

and preprocessing, feature engineering, model development, and evaluation/analysis: 

Data Collection and Overview: We obtained a retrospective dataset of pediatric surgical cases 

from Children’s Health (a major pediatric hospital). Each record in the dataset corresponds to a 

single surgery and includes detailed information that we used as predictor variables for duration. 

The data covered a broad range of surgeries across different specialties, providing a diverse 

sample of case lengths. For each surgical case, we extracted features in several categories: 

• Patient Information: Basic demographics and health indicators of the patient. This 

included the patient’s age (in years), sex, and a classification of the patient’s status or 

acuity. We also had clinical details such as the patient’s ASA (American Society of 

Anesthesiologists) physical status rating, which ranges from 1 (healthy) to 5 (severely ill) 

and indicates anesthesia risk and indirectly complexity. Vital signs like preoperative 

systolic and diastolic blood pressure were included as well, as they can reflect patient 

condition (for example, very high or low blood pressure might indicate a more complex 

case or a stressed patient). We also noted patient’s body metrics (e.g., BMI) if available, 

and the payor type (insurance type) as a proxy for socio-demographic factors. 

• Procedure Details: Information about the surgery itself, such as the surgical 

specialty/service (e.g., general surgery, cardiology, orthopedics, etc.) and the specific 

case type or procedure category. These are important because different procedures 

naturally have different typical durations. We also considered whether the case was the 

first case of the day for that operating room (first-case status) which can be relevant as 

first cases have no preceding delays but also can be delayed by morning setup processes. 

A crucial engineered feature in this category was the moving average of past 

durations for similar cases: for each surgery, we computed the average actual duration of 

the last 3 cases of the same type (and within the same specialty) – termed Elapsed 

Duration MA3. This feature provides a data-driven prior expectation for the case length 

based on recent history, and we hypothesized it would be a strong predictor. 

• Scheduling and Timing Variables: We included temporal features such as whether the 

surgery started in the morning or afternoon (AM/PM), the day of week, week of the 

month, month, and whether the date was a holiday. These capture potential patterns like 

weekly scheduling differences or seasonal effects (for instance, certain elective pediatric 

surgeries might cluster at certain times of year, or staffing levels might differ on 

weekends vs weekdays, affecting throughput). 

• Surgical Team & Provider Factors: We gathered information about the surgeon and the 

OR team for each case. This included the identity of the primary surgeon (anonymized 

ID) and the surgeon’s experience (e.g., years of practice or number of past cases 

performed). Team familiarity measures were also derived – for example, we calculated 

how frequently the same team members (surgeon, anesthesiologist, nurses) had worked 

together in the past, measured in terms of number of prior shared cases or cumulative 

minutes together as a team. The intuition is that a well-coordinated team that has worked 

together often may perform surgeries more efficiently. Another related feature was room 

familiarity – whether the surgeon (or team) was very accustomed to the specific 



operating room environment. We also tracked if the surgery had any preceding delays: 

how many cases in the same room earlier that day were delayed and the total minutes of 

delay before this case’s start. This feature captures the ripple effect of schedule delays 

(e.g., if previous surgeries ran late, the team might be either warmed-up and quick, or the 

schedule disruption might carry into the next case). 

• Outcome Variable: The target we aimed to predict was the actual surgery duration, 

measured from patient entry to exit of the operating room (in minutes). This is sometimes 

called “wheels-in to wheels-out” time. All predictor features listed above were available 

prior to the surgery start (either known in advance or easily obtainable at scheduling 

time), making them suitable for forecasting the duration. 

Data Preprocessing: Before modeling, we cleaned and prepared the dataset. We handled 

missing values in features (for instance, if any vital sign or ASA rating was occasionally not 

recorded, we employed appropriate imputation or omitted those cases as necessary). Categorical 

variables like surgical service, day of week, or surgeon ID were encoded for use in models 

(either via one-hot encoding or ordinal encoding, depending on the model). We also normalized 

or scaled continuous variables such as age or blood pressure where needed, especially for models 

sensitive to feature scale (e.g., linear regression or SVM). Outlier analysis was performed on the 

duration variable – extremely long or short cases relative to their peers were examined to decide 

if they were special-case scenarios (such as multi-stage procedures or aborted surgeries) that 

should be excluded to prevent skewing the model training. Additionally, we computed the 

engineered features mentioned (moving averages, familiarity metrics) from the raw data, 

merging those into the dataset. The dataset was then split into training and testing sets (for 

example, using an 80/20 split stratified by surgical specialty to ensure representation across all 

types in both sets). We also considered time-based splits (training on earlier years, testing on 

later data) to mimic prospective prediction, ensuring that the model was evaluated on data it had 

not seen. 

Model Development: We evaluated a suite of prediction models, each bringing different 

advantages, to determine which would be most suitable for our problem. The models we 

considered include: 

• Linear Regression: A multivariate linear model that creates a weighted sum of all 

features to predict duration. This model is fast to train and easily interpretable 

(coefficients indicate the direction and magnitude of each feature’s impact on duration), 

but it can only capture linear relationships and may perform poorly if the true 

relationships are complex or interactive. 

• Decision Tree Regression: A binary decision tree that splits the data based on feature 

values to predict duration. This model can capture non-linear relationships and 

interactions in the data (by splitting on different features sequentially). It’s relatively 

interpretable (one can follow the tree structure to see how predictions are made) and 

handles categorical variables well. However, single decision trees can be unstable and 

prone to overfitting, especially if not pruned, and they may not be as accurate as 

ensemble methods. 

• Random Forest: An ensemble of many decision trees (trained on bootstrapped samples 

of the data with random feature selection for splits) whose predictions are averaged. 



Random forests improve over single trees by reducing variance and are generally more 

robust and accurate. They can handle complex feature interactions and are less sensitive 

to outliers or noise. While more complex than a single tree, they retain some 

interpretability through measures like feature importance (though not as straightforward 

as linear models). Random forests tend to be slower to train/predict than a single tree but 

still feasible for our dataset size. 

• Support Vector Regression (SVR): A support vector machine applied to regression. We 

considered SVR with non-linear kernels (like RBF) to potentially capture intricate 

relationships in the data. SVR tries to find a function that fits the data within a certain 

error margin, maximizing margin around the hyperplane. It can handle high dimensional 

data and complex relations, but it typically requires careful parameter tuning (kernel 

parameters, regularization) and can be computationally intensive on larger datasets. SVR 

is less interpretable, as the resulting model is not easily expressed in terms of the original 

features. 

• Light Gradient Boosting Machine (LightGBM): A gradient boosting framework using 

tree-based learners, known for its efficiency and high performance. LightGBM builds an 

ensemble of decision trees in a stage-wise fashion, where each new tree corrects errors of 

the combined existing model. It can handle large datasets and many features, capturing 

non-linear effects and interactions automatically. LightGBM also has built-in 

mechanisms to reduce overfitting (through regularization and early stopping) and often 

achieves better accuracy than random forests by focusing on difficult-to-predict cases 

with each new tree. The trade-off is reduced interpretability – while feature importance 

can be extracted, the overall model is a black box in terms of how it combines features to 

make a prediction. 

For all models, we used the same training data and features to ensure a fair comparison. We 

performed hyperparameter tuning for the more complex models (Random Forest, SVR, 

LightGBM) using cross-validation on the training set. For example, we tuned the number of trees 

and maximum depth for Random Forest, the kernel parameters and regularization for SVR, and 

the learning rate, tree depth, and number of boosting rounds for LightGBM. We applied 5-fold 

cross-validation to prevent overfitting during this tuning process – meaning the training data was 

further split into folds where the model was trained on 4 folds and validated on the 5th, rotating 

this process, to find parameters that generalize well. The simplest models (Linear Regression, an 

un-pruned Decision Tree) were also tested, with regularization added to linear regression if 

needed (ridge regression) to handle multicollinearity. 

Performance Evaluation:  

We evaluated model performance on the reserved test dataset (and also tracked cross-validation 

performance to ensure consistency). The primary evaluation metrics were Root Mean Squared 

Error (RMSE) in minutes, which heavily penalizes larger errors, and Mean Absolute 

Percentage Error (MAPE), which expresses error as a percentage of the actual duration, useful 

for understanding error relative to case length. These metrics were chosen to capture both 

absolute and relative accuracy of predictions. Additionally, we looked at Mean Absolute Error 

(MAE) for a more direct interpretation of average error in minutes, and we examined the 



distribution of prediction errors (error = predicted – actual) to see if models tended to over- or 

under-predict systematically. 

We also compared all models against the hospital’s current scheduling Scheduled 

Duration predictions. The Scheduled Duration for each case is essentially the duration that was 

initially allocated on the schedule (the hospital’s best guess, based on their existing process). 

This serves as a baseline model – effectively how things are done now without our predictive 

model. Any improvement of our models over the Scheduled Duration in accuracy would 

demonstrate the value of the data-driven approach. 

Interpretability and Analysis:  

Given the importance of interpretability in healthcare, we devoted effort to interpreting the best-

performing model. For the LightGBM model, we extracted feature importance rankings (e.g., 

based on gain or permutation importance) to identify which features contributed most to 

reducing prediction error. We also employed partial dependence plots for the top features to 

visualize how changes in a feature affect the predicted duration, holding other factors constant. 

This analysis helps verify that the model’s behavior is clinically reasonable (for instance, seeing 

that predicted duration increases for higher ASA ratings or for less experienced surgeons aligns 

with expectation). We also analyzed the effect of using different numbers of top features. By 

progressively building models with the most important features, we observed how performance 

changed, noting that beyond the top ~7 features, additional variables yielded diminishing returns 

in accuracy. This suggests a possible simplified model or at least highlights that a core subset of 

features carries most of the predictive signal. 

In summary, our methodology combined a rich dataset with thoughtful feature engineering and a 

range of modeling techniques, followed by rigorous evaluation. This approach enabled us to not 

only find the best model for predicting pediatric surgery durations but also to understand why it 

performs well and how it could be implemented in practice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Results 

Our LightGBM model substantially outperformed the hospital’s current scheduling estimates. 

While the baseline Scheduled Duration had an RMSE of ~50 min and MAPE of ~42 %, 

LightGBM reduced RMSE by ~20–30 % (to ~35–40 min) and MAPE into the low-30 % range. 

Ensemble methods (Random Forest, SVR) also improved over baseline but fell slightly short of 

LightGBM. Error‐distribution analysis showed that scheduling estimates systematically 

overestimate durations, whereas LightGBM’s errors were centered near zero with a tighter 

spread, indicating fewer extreme underruns or overruns. 

Feature‐importance analysis revealed that the top predictors were: 

1. Historical average duration (Elapsed Duration MA3) 

2. Procedure type/specialty 

3. Surgeon experience 

4. Team familiarity 

5. Patient age and physiological indicators 

Beyond the first ~7 features, additional variables yielded diminishing returns, suggesting these 

core factors capture most of the predictive signal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Conclusions and Future Work  

We demonstrated that a LightGBM model can predict pediatric surgery durations more 

accurately than current scheduling methods, cutting absolute and relative errors by roughly 20–

30 %. Key drivers—recent case history, team experience, and patient factors—offer actionable 

insights for scheduling practices. 

Future directions include: 

• Integrating the model into live scheduling tools and conducting a pilot for prospective 

validation. 

• Developing an optimization module that uses these predictions to sequence cases and 

assign rooms. 

• Exploring adaptive, real-time updates to adjust schedules mid-day. 

• Periodically retraining the model on new data to maintain accuracy. 

These steps will help translate our findings into operational gains: better OR utilization, reduced 

overtime, and improved patient flow. 

 


