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1 Executive Summary

Sparse logistic regression plays a central role in scientific and industrial applications where both predictive accuracy
and interpretability are required. However, enforcing exact sparsity through an ℓ0 constraint leads to a challenging
combinatorial optimization problem. Branch and bound frameworks provide a principled way to obtain globally
optimal sparse models, but their performance is fundamentally limited by repeated subproblem solves and by the
size of the search tree.

This project develops new algorithms and computational techniques to improve the scalability of branch and
bound for ℓ0-constrained logistic regression. We introduce two major advancements: (1) a parallel branch and bound
architecture that distributes branching decisions across multiple worker processes, and (2) a GPU-accelerated stochas-
tic gradient descent solver tailored for the subproblems encountered during search. Together, these enhancements
substantially reduce runtime while preserving solution quality.

Our experiments demonstrate that parallel branching achieves near-ideal speedup up to four workers, and that
GPU-accelerated stochastic gradient descent provides more than an order-of-magnitude improvement over CPU-
based subsolvers. Furthermore, despite the nonconvex landscape, the GPU-based subsolver maintains high accuracy
in lower-bound estimation, enabling effective pruning of the search tree.

Overall, this work shows that principled algorithm design—combined with modern parallel and GPU comput-
ing—can dramatically accelerate exact sparse logistic regression, making global feature selection more feasible at
scale.

2 Research Motivation

Logistic regression is one of the most widely used statistical models for binary classification across science, engineering,
medicine, and finance. Its appeal stems from its interpretability and its ability to quantify how individual features
influence an outcome. In many modern applications, however, datasets contain far more potential predictors than
are truly relevant. Identifying a small, meaningful subset of features—sparse modeling—is therefore essential both
for interpretability and for avoiding overfitting.

Convex optimization techniques, such as ℓ1 or ℓ2 regularization, are commonly used to induce sparsity, but
provide less clear insights than non-convex measures, especially when dealing with data that is not uniform in scale.
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Non-convex methods can provide more precise and more direct insights, but are computationally difficult to solve,
especially at scale.

Branch and bound is a promising framework for this task because it can guarantee globally optimal sparse
solutions. However, its practical performance is often limited by the size of the search tree, which grows exponentially
in the worst case, and the cost of repeatedly solving logistic regression subproblems at each node of the tree.

This project continues the development of a branch and bound solver tailored specifically for sparse logistic
regression. Our primary motivation is to close the gap between the theoretical optimality of ℓ0-based methods and
their practical scalability. To do this, we design new algorithms that make far better use of modern hardware. In
particular, we introduce parallel mechanisms for the branching procedure and a GPU-accelerated solver for evaluating
subproblems.

By leveraging parallel computing and GPU-based optimization, we aim to bring exact sparse logistic regression
closer to real-world feasibility on high-dimensional datasets—where interpretability, accuracy, and computational
efficiency are all critical.

3 Research Objective

The goal of this project is to develop and implement scalable solvers for ℓ0-constrained logistic regression. Building
upon our existing branch and bound framework, our goal is to significantly reduce runtime by designing solvers that
leverage hardware capabilities more effectively.

More specifically, we aim to:

• Develop a parallelized branch and bound architecture that distributes branching operations across multiple
worker processes with minimal synchronization overhead.

• Develop a GPU-accelerated subproblem solver to dramatically reduce per-node solve time.

• Evaluate performance on real datasets to determine how solver improvements translate into faster global opti-
mization.

Through these efforts, we aim to expand the practical applicability of exact sparse logistic regression to larger datasets
and higher-dimensional feature spaces.

4 Research Methodology

4.1 Problem Formulation

Given feature and target datasets X ∈ Rm×n, y ∈ {0, 1}m and an ℓ0 constraint 0 < k ≤ n, we produce coefficient
vector θ ∈ Rn according to the following

min
θ

n∑
i=1

[
−yi ln

(
1

1 + e−X⊤
i θ

)
− (1− yi) ln

(
1− 1

1 + e−X⊤
i θ

)]
s.t. ∥θ∥0 ≤ k

4.2 Baseline Branch and Bound Solver

4.2.1 Subproblem Representation

Each node in the branch and bound tree corresponds to a subproblem PF+,F− defined by:

• F+: features forced to be included

• F−: features forced to be excluded

The remaining features are free.
A branch picks a free feature i and creates two children:

• Left child: F+ ∪ {i}

• Right child: F− ∪ {i}

2



4.2.2 Relaxation and Bounds

We use a relaxation function Φ(·) that evaluates the subproblem while respecting fixed inclusions/exclusions. A key
monotonicity property holds:

Φ(PF+,F−) ≤ Φ(PF+∪{i},F−) and Φ(PF+,F−) ≤ Φ(PF+,F−∪{i})

i.e., fixing variables never decreases the lower bound, which guarantees correctness of branch and bound.

4.2.3 Algorithm Summary

Algorithm 1 Branch and Bound

Initialize U = {Pinit}, the set of unexplored subproblems
Initialize F = ∅, the set of feasible subproblems
Compute the initial lower bound LB = Φ(Pinit) and an initial UB = fUB

while UB − LB > ε do
Pick the subproblem in U with the smallest relaxation value.
Branch on a selected feature i.
Add feasible leaves to F , add active nodes back to U , prune nodes with relaxation values exceeding UB
Update UB = min{P∈F} Φ(P) and LB = min{P∈U} Φ(P)

end while
Return the best feasible solution argmin{P∈F} Φ(P) within ε.

4.3 Parallel Branching

We use a controller-worker model to parallelize the branching step of the branch and bound algorithm. A single
controller thread maintains the global unexplored node queue U as well as the the global upper and lower bounds
and is responsible for distributing work to a pool of brancher workers. Each brancher receives a subproblem, selects
the next branching variable, generates its child subproblems, and computes the child subproblem bounds before
returning nodes back to the central controller for handling.

This design ensures that branching, which is often one of the most computationally expensive components of the
search process, can be parallelized with minimal synchronization overhead. The controller performs only lightweight
operations—queue management and node dispatch—while all computationally heavy branching and bounding work
is offloaded to the workers.

Our implementation uses Python’s Multiprocessing Module, with Process objects as branchers and Pipes for
communication.

Figure 1: Parallel Branching Process Flow
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4.4 GPU Acceleration

To accelerate the repeated subproblem solves required during branch and bound search, we implemented a stochastic
gradient descent (SGD) solver optimized for execution on a GPU. Each subproblem corresponds to fitting a logistic
regression model with a restricted feature set determined by the branching decisions made so far. Because these
subproblems must be solved thousands of times across the search tree, solver efficiency directly impacts overall
performance.

SGD is particularly attractive in this context because its low per-iteration cost and simple update rules map
efficiently to GPUs. Our GPU-based solver performs minibatch stochastic gradient updates using CuPy [3] calls
to Nvidia’s CUDA platform. For each subproblem, the CPU controller assembles the feature-mask for the dataset
and transfers it to GPU memory, after which all gradient evaluations, parameter updates, and loss computations
are executed on the device. This design minimizes CPU–GPU communication and allows the solver to exploit the
high-throughput parallelism of modern GPUs.

4.5 Testing Methodology

All tests were conducted using Georgia Tech’s AI Makerspace with select datasets from the UCI Machine Learning
Repository [5].

5 Results

5.1 Parallel Branching

Figure 2: Runtimes vs Brancher Count
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Figure 2 summarizes the performance impact of increasing the number of brancher workers. The left panel shows
the mean setup time as the number of branchers increases, while the right panel shows the corresponding mean
total solve time for choosing 5 variables from the Ionosphere Dataset [4], along with an idealized reciprocal speedup
curve for reference. Setup time increases modestly with additional branchers, reflecting the overhead associated with
initializing workers. In contrast, solve time decreases substantially. The observed speedup closely follows the ideal
reciprocal trend, indicating with adequate hardware, further time reductions would be attainable.
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Figure 3: Brancher Utilization by Brancher Count
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Figure 3 shows violin plots of worker utilization as a function of the number of branchers. Across all configurations,
utilization remains extremely high: typically above 97% and frequently exceeding 99%. This indicates that branchers
almost always have work available and rarely idle waiting on the controller. High utilization across all tested brancher
counts suggests that the system is not bottlenecked by load imbalance or by the pace at which the controller supplies
work.

5.2 GPU Acceleration

Figure 4: Runtime per Batch Size Across Subsolvers

Dataset Myocardial Infarction Complications Madelon

Subsolver Slope (s/problem) Intercept (s) R2 Slope (s/problem) Intercept (s) R2

Newton-CG 0.0313 0.0311 0.9994 1.4081 1.3880 0.9981
MOSEK 0.3828 0.4183 0.9852 0.4452 0.4490 0.9996
GPU SGD 0.0036 0.0049 0.9997 0.0036 0.0049 0.9997
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(a) Myocardial Infarction Complications Dataset
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(b) Madelon Dataset

Figure 4 compares the runtime of the GPU-accelerated SGD subproblem solver with CPU based approaches.
These batches are warm started random selections from the midsized Myocardial Infarction Complications dataset
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[1] and the large Madelon dataset [2]. We see that not only does SGD achieve more than an order-of-magnitude
speedup over CPU-based methods, but it also scales far more efficiently.

Figure 5 shows results for a full solve with a 1000 second cutoff. We see improvements in iteration counts, solve
time, and bound convergence that are maintained as the problem scales.

Overall, the GPU-accelerated SGD solver provides dramatic reductions in subproblem solve time. When amor-
tized across the full search, these speedups substantially decrease total branch and bound runtime while preserving
solution quality. Future enhancements such as selective restarts or multi-start refinement may further mitigate the
small number of inaccurate prunes without sacrificing the solver’s performance advantage.

Figure 5: Runtime per Batch Size Across Solvers

Dataset Instances Features ℓ0 Constraint Solver Iterations Bound Gap Time
(m) (n) (k) Percent (seconds)

Myocardial 1700 111 4 CPU B&B 1389 11.52% 1000
Infarction MOSEK 2161 7.89% 1000
Complications GPU SGD B&B 1954 0.0% 18.04

6 CPU B&B 1489 10.13% 1000
MOSEK 1939 8.36% 1000

GPU SGD B&B 33714 0% 303.72
8 CPU B&B 1660 8.70% 1000

MOSEK 1916 7.35% 1000
GPU SGD B&B 66143 2.04% 1000

10 CPU B&B 1630 7.82% 1000
MOSEK 1906 6.84% 1000

GPU SGD B&B 66549 3.13% 1000

Madelon 2000 500 4 CPU B&B 1926 24.54% 1000
MOSEK 1261 22.28% 1000

GPU SGD B&B 61071 16.31% 1000
6 CPU B&B 1912 24.86% 1000

MOSEK 1283 22.26% 1000
GPU SGD B&B 43011 20.39% 1000

8 CPU B&B 1930 24.96% 1000
MOSEK 1264 21.40% 1000

GPU SGD B&B 49106 20.41% 1000
10 CPU B&B 1959 24.98% 1000

MOSEK 1295 21.83% 1000
GPU SGD B&B 58478 20.29% 1000

6 Conclusions and Future Work

This work demonstrates that significant improvements to convergence rates can be made in branch and bound
methods for sparse logistic regression through parallelism and GPU acceleration. Our parallel branching architec-
ture achieves high utilization and near-ideal scaling for moderate numbers of workers, while our GPU-accelerated
stochastic gradient solver reduces subproblem runtimes by more than an order of magnitude. Together, these im-
provements help quicken convergence with minimal loss in pruning accuracy.

The results highlight the potential of combining principled optimization frameworks with modern hardware to
solve large-scale nonconvex problems. However, several opportunities remain for further improvement. Future work
may include:

• Adaptive strategies to improve the robustness of SGD-based lower bounds.

• Dual-informed bounding techniques to provide tighter relaxations during search.

• Distributed branch-and-bound, extending parallelism across multiple machines.

• Enhanced branching rules to further reduce search tree size.
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• Integration into a production-quality solver to support applied scientific and industrial workloads.

Overall, this project demonstrates that exact sparse logistic regression—long viewed as computationally pro-
hibitive—can be made significantly more scalable through thoughtful algorithm–hardware co-design.
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