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1 Executive Summary

This research, conducted under the Spring 2025 Pennington Undergraduate Research Award
(PURA), explores the development of efficient transformers, essential for sequence modeling tasks.
Sequence modeling is a foundational component of machine learning research applicable to many
fields, ranging from natural language processing to time series forecasting and image analysis. While
traditional models like recurrent neural networks (RNNs) and their improved successors (LSTM,
GRU) enabled deep learning models to incorporate contextual data, they suffered from limited scal-
ability due to the lack of parallelization capabilities. This paradigm shifted in 2017 when transformer
architectures were introduced, enabling parallel training and state-of-the-art performance across di-
verse domains. However, their quadratic time complexity has spurred interest in developing more
computationally efficient alternatives.

In this project, we focused on proposing novel sequence modeling architectures with reduced com-
putational complexity, while preserving or improving modeling accuracy. We developed mathemat-
ically principled models and validated them through extensive testing on downstream tasks, includ-
ing Long Range Arena for general sequence tasks, WikiText for language modeling, and SC10 for
speech classification. Such downstream tasks are closely tied to real-life applications, ensuring the
high applicability of the created models.

Among the models evaluated, SAMoVAR stood out by achieving state-of-the-art performance in
time series analysis tasks. By integrating autoregressive structures with efficient transformer de-
sign principles, SAMoVAR consistently outperformed competitive baselines on multivariate datasets
such as ETT, traffic, solar, and electricity.

The findings of this research highlight promising directions for building scalable and effective se-
quence models, balancing performance and efficiency. Future work will extend this methodology
to new architectures and applications, with the aim of publishing impactful results and advancing
practical AI deployment.

2 Research Motivation (Related Works)

Throughout the history of AI and machine learning, sequence modeling has been a topic of high
interest. Starting in the 1980s, recurrent neural networks kickstarted the development of deep learn-
ing methods specialized for sequence modeling [5]. Using a hidden state that carried information
from the previous data points, recurrent neural network models were able to account for context, al-
though drawbacks, including gradient vanishing and gradient explosion, were apparent. Subsequent
research improved the performance of such recurrent neural networks, creating models like LSTM
and GRU, which included gating mechanisms, improving the model’s performance [4, 1]. Although
this mostly solved the gradient explosion and vanishing problem of RNNs, a big roadblock was still
present in the fact that the training process wasn’t parallelizable, meaning that training these models
was a very time and resource-consuming task, and scaling was pretty much impossible.

Beginning in 2017 the field of sequence modeling was revolutionized through the invention of trans-
formers. [9] Training query, key, and value for each timestep, transformers were able to learn de-
tailed contextual dependencies. Most importantly, transformers could be trained in parallel, without



having to go step by step in the temporal direction, enabling the training of extremely large models.
This revolutionary breakthrough led to a boom in the AI industry, which can be felt in everyday life
through large language models like ChatGPT.

Despite the upsides highlighted in the paragraph above, transformers are still criticized for their need
for computing power, with larger models requiring the extensive use of countless GPUs for train-
ing. The high computational costs of transformers are caused by the fact that their training scales
in quadratic time (O(n2)), and to address this issue, researchers have been developing sequence
modeling architectures with lower time complexities. Linear transformers started the development
of the field by suggesting a linear alternative to transformers, which was done through the elimi-
nation of the sigmoid activation function in context calculation [6]. Researchers have since been
creating different efficient sequence modeling structures, including efficient transformers and state-
of-the-art models, which include models like S4 and Mamba, attempting to reach the perfect balance
between efficiency and performance [3, 2]. Through my research with the Pennington Undergrad-
uate Research Award, I aim to contribute to the advancement of state-of-the-art AI architectures,
particularly in improving the efficiency of sequence modeling models.

3 Research Objective

The research objectives of the Spring 2025 PURA award period were the following:

1. Propose novel sequence modeling architectures capable of effectively modeling sequen-
tial data with lower computational complexity. The effectiveness of the proposed models
should be backed up mathematically.

2. Verify the performance of the developed models by performing the following downstream
tasks:

• Natural Language Processing
• Time Series Analysis
• Image Analysis
• Speech Classification
• Etc.

4 Research Methodology

After identifying a potential breakthrough in the field of efficient transformers, the first step for val-
idating our model was to create mathematical representations. These mathematical representations
were supplemented with visual diagrams to improve intuition.

Given our limited computing resources, it was natural to prioritize smaller datasets for experiments.
We tested the models in the following tasks using the following datasets:

• Long Range Arena (LRA) [8]: A dataset we used extensively is the famous Long Range
Arena. Long Range Arena consists of ListOps, text classification, document retrieval, im-
age classification, pathfinder, and pathfinder-x tasks. ListOps tests a model’s hierarchical
reasoning capabilities, text and document retrieval tests a model’s ability to analyze nat-
ural language data, image classification tests the model’s capability of handling images,
and pathfinder tasks measure long-distance spatial reasoning capabilities. Most of the tasks
laid out in the research objective section were performed utilizing the Long Range Arena
dataset.- A dataset we used extensively is the famous Long Range Arena. (cite) Long
Range Arena consists of ListOps, text classification, document retrieval, image classifi-
cation, pathfinder, and pathfinder-x tasks. ListOps tests a model’s hierarchical reasoning
capabilities, text and document retrieval tests a model’s ability to analyze natural language
data, image classification tests the model’s capability of handling images, and pathfinder
tasks measure long-distance spatial reasoning capabilities. Most of the tasks laid out in the
research objective section were performed utilizing the Long Range Arena dataset.

• WikiText: To further test our models on natural language processing tasks, we utilized the
WikiText dataset. The WikiText dataset is a collection of over 100 million tokens extracted
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from selected articles on Wikipedia. Being composed of full articles, the WikiText dataset
effectively tests the ability to model long-term dependencies.

• SC10: For speech classification, we used the Speech Commands dataset, SC10. SC10
is an audio dataset of spoken commands in a 1D raw waveform sequence sampled at 16
kHz. Due to the extremely long input length of 16000 tokens, this dataset effectively tests
a model’s ability to model extremely long-range continuous signals.

• Depending on the characteristics of each model, potential applications in other downstream
tasks, such as DNA modeling, were tested.

5 Results

Through extensive experiments, we verified that many of our models achieved state-of-the-art or
near-state-of-the-art performance on many downstream tasks, including natural language process-
ing, image analysis, time series analysis, and DNA analysis. It is important to note that not all
models behaved similarly in those downstream tasks. While there were models that worked in any
general sequence, some models only showed exceptional performance on certain tasks.

For an example, I will use the results for the SAMoVAR model submitted for ICML and is cur-
rently available via preprint [7]. For this paper, we make alterations to the vector autoregressive
model, aligning it with linear transformers, particularly in time series analysis use cases. The two
figures above visualize the structure of SAMoVAR. Since we were focusing on time series data, we
tested our model on time series multivariate time series datasets, including weather, solar, electricity,
electricity transformer temperature (ETT), and traffic datasets. The table below shows the average
MSE on each dataset after having tested on varying input lengths, compared to other state-of-the-art
models, with the best-performing model bolded and the runner-up underlined.
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As you can see from the table above, our proposed model, SAMoVAR, beats other state-of-the-art
models such as Linear Transformer, CATS, PatchTST, and Dlinear on time series analysis tasks.
This suggests that our proposed model does bring a significant improvement in modeling long-term
dependencies with real-world implications.

6 Conclusions and Future Works

By iteratively improving and testing novel models, we identified architectures like SAMoVAR that
can achieve state-of-the-art results on sequence modeling tasks. Such models advance the field of
efficient transformers, bringing real-life implications in improving the effectiveness and efficiency
of natural language processing, time series analysis, and other sequence analysis models that are
tightly knit to our everyday lives.

We will continue repeating and improving the process of identifying efficient transformers for se-
quence modeling tasks. The models identified as effective will be published through relevant aca-
demic conferences, encouraging the utilization of our breakthroughs in making advancements in
various fields.

4



References
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