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Improve in Performance and Time Bounds

Future Plans

The yolk is an important concept in spatial voting 
games, it is the ball of minimum radius that 
intersects all median hyperplanes. A median line 
hyperplane is any plane that divides the plane 
into two closed half space each with at most half 
amount of all points. The position of the yolk 
shows the approximate center of the distribution 
of voters, while the magnitude of the yolk's size 
illustrates the deviation from one that would 
result in a majority rule equilibrium or core 
outcome.

Abstract 

In the context of the Euclidean spatial model, where each voter's preferred 
policy is represented as an ideal point in a multi-dimensional space, voters 
tend to favor policies closer to their individual ideal points according to the 
Euclidean norm. This model has extensive study and practical 
applications. In majority rule voting within this model, a classical Nash 
equilibrium signifies a point where no other point is closer to more than 
half the voters' ideal points. While the existence of such equilibrium is 
supported by theory, empirical evidence, and decision-making processes, 
it is often not feasible due to chaotic cycles and collapses in the space. 
Efforts have been dedicated to finding alternative solution concepts that 
are more general and in line with practical scenarios.

Introduction

Setting up notations: 
The set of voter ideal points, denoted as V ∈ ℝ^m, comprises a cardinality 
of n individuals. For any given hyperplane h in ℝ^m, we designate the two 
closed half-spaces defined by h as h+ and h-. A hyperplane h is identified 
as median with respect to V if and only if each of the closed half-spaces it 
delineates contains at least half of the total voters, which is expressed as: 
|h+ ∩ V| ≥ ½n and |h- ∩ V| ≥ ½n.

Preliminaries

Determining the yolk radius

Algorithm for yolk in fixed dimension

The yolk plays a pivotal role in the context of 
spatial voting games owing to its inherent simplicity 
and its interrelation with other theoretical 
constructs. Its radius offers approximation for 
delineating uncovered set, characterizing ε-core 
and etc. Therefore, by calculating the yolk’s 
dimension, we can having a better understanding 
of associated theoretical notions. 

(Joachim 2012)

Prof. Craig derives a polynomial-time algorithm to compute 
the yolk for any fixed dimension.

(the yolk)
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Figures above are 3D figures from different vantage points, that show a 
possible counter-example to the algorithm that already derived. The possible 
counterexample has x1: (0,2,0); x2: (-1,0,0); x3: (1,0,0); x4-x5: 
(4,3,0)+epsilon_j, j=4,5; x6-x7: (-4,3,0)+epsilon_j, j=6,7; x8-x9: 
(0,-5,0)+epsilon_j, j=8,9. The binding determining hyperplanes are B_1={x1} 
with a hyperplane H1 that has normal (0,1,0); B_2={x3} with a hyperplane H2 
that has normal (4/5,-3/5,0); B_3={x4} with a hyperplane H3 that has normal 
(4/5,3/5,0). In further research, we will  either prove that the counter-example 
has mistakes in itself or updated current algorithm.

One prominent solution concept is the "yolk," as discussed above. This 
yolk concept aligns with the Nash equilibrium point when it exists and has 
notable connections to other solution concepts like the uncovered set, 
Pareto set, win set, and Shapley-Owen power scores. The yolk concept 
possesses favorable normative properties and bounds on outcome sets. 
While determining the yolk can be computationally challenging, recent 
work has derived a polynomial algorithm for arbitrary fixed dimensions. 
Although this algorithm might not be practical for higher dimensions, it 
remains useful for most empirical studies, often conducted in two 
dimensions due to the substantial predictive power of this reduced 
dimensionality. Additionally, the algorithm can be implemented efficiently 
using logarithmic time and parallel processing.

Additionally, a hyperplane {x: p* x = p_0} is deemed consistent with a 
median split (S, T) if S lies within h+ and T is found within the intersection 
of h- and V. The collective ensemble of all possible median splits is 
denoted as M. Proposition 1. A hyperplane is regarded as median if and 
only if it aligns with a specific median split (S, T) from the set M.

The primary challenge in devising an efficient algorithm lies in the infinite 
nature of median hyperplanes. To address this, our objective is to identify 
a critical subset of median hyperplanes, referred to as "determining" 
hyperplanes, that can encapsulate the yolk's properties.

Initially, the set of extremal median hyperplanes is a natural choice for 
consideration. An extremal hyperplane is one that contains a specific 
number of voter ideal points, and it is instrumental in determining the yolk 
radius, particularly in two-dimensional scenarios. However, this 
straightforward assumption can be inadequate, leading to the need to 
expand the determining set.

To overcome this, a more comprehensive set, both larger than the 
extremal set yet relatively compact, is derived. This set, while theoretically 
infinite, remains only slightly larger than the extremal set, striking a 
balance between precision and practicality. The formal statement of 
Theorem 1 is deferred to later in the section to facilitate the 
comprehension of the terminology introduced in its proof.

To establish this determining set, we draw from the proof of yolk 
convergence outlined in a previous work. By seeking upper bounds on the 
yolk radius, we formulate a mathematical program that characterizes the 
radius. This program leverages a form of duality known as "polarity" to 
express median hyperplanes. For each median split, the program identifies 
the hyperplane farthest from a given point. The formulation evolves into a 
nonlinear mathematical program, providing insights into the geometric 
interpretation of its constraints.

To ensure an exact formulation for algorithmic purposes, the Karush-Kuhn-
Tucker (KKT) conditions are applied to this mathematical program. 
Surprisingly, the KKT conditions yield a simplified problem, reducing 
consideration from an infinite to a finite collection of polynomially sized sets 
of hyperplanes. This transformation ultimately leads to the derivation of 
determining hyperplanes that possess crucial properties. These determining 
hyperplanes exhibit dependence on the chosen point of origin, thereby 
offering a nuanced understanding of their role.

The central outcome of this section is encapsulated in Theorem 1, asserting 
that the set of determining median hyperplanes effectively determines the 
radius of the yolk centered at any point. Notably, this result is translatable 
across different origin points, thereby extending the notion of determining 
hyperplanes. It is important to note that while the determining hyperplanes 
form a polynomially bounded set for fixed dimensions, their union is typically 
infinite.

Then we present a polynomial algorithm for computing the yolk of a given set 
of points. Additionally, we demonstrate that the algorithm can operate 
efficiently in logarithmic time with a polynomial number of parallel processors. 
To establish the algorithm's foundation, we introduce a few preliminary 
lemmata.

To address both non-degenerate and degenerate scenarios, we introduce 
Lemma 2 and Theorem 2. Lemma 2 provides conditions under which a given 
point cannot be the center of the yolk. Specifically, it asserts that if the 
number of determining median hyperplanes binding at a point is less than the 
dimension plus one and certain conditions are met, then the point cannot be 
the yolk center. The proof involves demonstrating the existence of a direction 
that decreases the yolk radius when moving from such a point. Theorem 2 
establishes a pseudo-polynomial time algorithm for computing the yolk, 
extending from the non-degenerate to the degenerate case. This algorithm 
has a time complexity of O(n(m+1)^2), where n is the number of points and 
m is the dimension.

Furthermore, Corollary 2 extends the algorithm's applicability to the 
degenerate case by showing that infinitesimal perturbations of a degenerate 
configuration yield infinitesimal changes in the yolk's center and radius. 
Corollary 3 demonstrates that the algorithm is highly parallelizable, allowing it 
to run in logarithmic time with a polynomial number of processors.

Despite the theoretical complexity estimates, the practical application of the 
algorithm may be limited due to its computational requirements. Thus, the 
subsequent section focuses on refining the algorithm for more feasible 
execution, particularly in two-dimensional scenarios of moderate size.

An extended analysis suggests that, if a certain conjecture by Erdős, Lovász, 
Simmons, and Straus holds true, the worst-case complexity could be further 
reduced to o(n^3+ε) for any ε > 0. The algorithm's practical runtime is also 
estimated to be around O(n^3 log n) based on empirical observations. 
Additionally, a variant of the algorithm is proposed, potentially offering sub-
cubic time complexity in two dimensions, although precise bounds for this 
remain an open research question.
The improvement involves refining the computation of equidistant points to 
affine hulls, particularly when a combination of lines and points is present. 
The revised algorithm selectively discards equidistant points that are farther 
away from the corresponding affine hulls, as such points are unlikely to be 
the yolk center. The modified approach then focuses on 3-tuples of affine 
hulls, computing the closest equidistant point and determining the median 
status of hyperplanes. The overall time complexity is estimated to be O(n 
m^2 + m), with considerations for preprocessing extremal hyperplanes and 
handling various tuple scenarios.

The discussion highlights the potential for parallelizing the algorithm and 
mentions the possible use of preprocessing techniques to achieve even 
more efficient solutions. In particular, it is suggested that by utilizing linear 
programming and focusing on extremal hyperplanes, a sub-cubic time 
complexity might be attainable. This could significantly enhance the 
efficiency of yolk computations, especially in higher dimensions.
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