Polynomial-time Algorithm for Computing the Yolk in Fixed Dimension

Yiwen Liu I Faculty Advisor: Tovey Craig

Abstract

The yolk is an important concept in spatial voting
games, it is the ball of minimum radius that games, it is the ball of minimum radius that intersects all median hyperplanes. A median line
hyperplane is any plane that divides the plane into two closed halt space each with hat most half amount of all points. The pasition of the yolk
shows the approximate center of the distribution shows the approximate center of the distribution
of voters, while the magnitude of the yolk's size illustrates the deviation from one that would
result in a majority rule equilibrium or core outcome.
The yolk plays a pivotal role in the context of spatial voting games owing to its inherent sim
and its interrelation with other theoretical and its interrelation with other theoretical
constructs. Its radius offers approximation constructs. Its radius offers approximation for
delineating uncovered set, characterizing ε-core
and etc. Therefore, by calculating the yolk's and etc. Therefore, by yalculatingtethe yolk's
dimension, we can having a better understandin dimension, we can having a bette
of associated theoretical notions.

Prof. Craig derives a polynomial-
the yolk tor any fixed dimension.

Introduction

In the context of the Euclidean spatial model, where each voter's preferred policy is represented as an ideal point in a multi-dimensional space, voters
tend to favor policies closer to their individual ideal points according to the Euclidean norm. This model has extensive study and practical applications. In majority rule voting within this model, a classical Nash
equilibrium signifies a point where no other point is closer to more than equilibrium signifies a point where no other point is closer to more than
half the voters' ideal points. While the existence of such equilibrium is half the voters 'ideal points. While the existence of such equilibrium is
supported by theory, empirical evidence, and decision-making processes,
it is often not feasible due to chaotic cycles and collapses in the space it is often not feasible due to chaotic cycles and collapses in the space.
Efforts have been dedicated to finding alternative solution concepts that Etforts have been dedicated to tinding glternative sol
are more general and in line with practical scenarios.
One prominent solution concept is the "yolk," as discussed above. This yoik concept aligns with the Nash equilibrium point when it exists and has
notatole connections to other solution concepts like the uncovered set, Pareto sett, win set, and Shapley-(wen power scores. The yolk concep
possesses favorable normative properties and bounds on outcome sets. possessest favorabie normative properries and bound on outcome sets.
While determining the yolk can be computationally challenging, recent work has derived a polynomial algorithm for arbitrary fixed dimensions. Although this algorithm might not be practical for higher dimensions, it
remains useful for most empirical studies, often conducted in two remains useful for most empirical studies, often conducted in two
dimensions due to the substantial predictive power of this reduced dimensions due to the substantial predicitive power of this reacuced
dimensionality, Additionaly, the algorithm can be implemented efficiently
using logarithmic time and parallel processing.

Georgia Institute of Technology.

Preliminaries

Setting up notations:
The set of voter ideal points, denoted as $V \in \mathbb{R}^{\wedge} m$, comprises a cardinality of n individuals. For any given hyperplane h in $\mathbb{R}^{\wedge} m$, we designate the two closed hall--spaces definied by has $h+$ and h.- A hyperlane h is identitied
as median with respect to v vi and only if each of the closed halt-spaces it as median with respect to V if and only if each of the closed half-spaces it
delineates contains at least half of the total voters, which is expressed as: delineates contains at least half
$h+n V l \geq 1 / 2$ and $\mid h-n V l \geq 1 / 2 n$.
Additionally, a hyperplane $\left\{x: p^{*} X=p\right.$ p 0 is deemed consistent with a
median spitit $(S, T$) if S lies within $h+$ and T is found within the intersect of h - and V . The collective ensemble of all possible median spitts is denoted V M . Proposition 1 . A hyperplane is regarded as median is and
only if it aligns with a specif

Determining the yolk radius

The primary challenge in devising an efficient algorithm lies in the infinite nature of median hyperplanes. To address this, our objective is to identity
a critical subset of median hyperplanes, referred to as "deetrmining" a critical subset of median hyperplanes, referred to as "determining"
hyperplanes, that can encapsulate the yolk's properties.
nitially, the set of extromal median
Initially, the set of extremal median hyperplanes is a natural choice for
consideration. An extremal hyperplane is one that contains a specific condicer aion. An extremal hyperplane is one that contains a specific
number of voter ideal points, and it is instrumental in determining the yolk radius, particularly in two-dimensional scenarios. However, this
straightforward assumption can be inadequate, leading to the need to straightiorward assumption c.
expand the determining set.
To overcome this, a more comprehensive set, both larger than the
extremal set het relatively compact is derived. This set while theo extremal set yet realitiely compact, is derived. This sest, whine the eretically
infinite, remains only slightly larger than the extremal set, striking a infinite, remains only slighty larger than the extremal set, striking a
balance between precision and practicality. The formal statement of Theorem 1 is deferred to later in the section to facilitate the
comprehension of the terminology introduced in its proof.

To establish this determining set, we draw from the proof of yolk convergence outlined in a previous work. By seeking upper bounds on the yolk radius, we formulate a mathematical program that characterizes the
radius TTis srogram leverages a form of duality known as "polarity" to radius. This program leverages a form of duality known as "polarity" to
express median hyperplanes. For each median split, the program identifies express median hyperplanes. For each median split, the program identifies
the hyperplane farthest from a given point. The formulation evolves into a nonlinear mathematical program, providing insights into the geometric interpretation of its constraints.
To ensure an exact formulation for algorithmic purposess, the Karush-Kuhn-
Tucker (KKT) conditions are applied ot this mathematical program Tucker (KKT) conditions are appplied to this mathematical program.
Surprisingly, the KKT conditions yield a simplified problem, reducing consideration from an infinitit to a a finitit collection of poblynomially sized sets
of hyperplanes. This transtormation ultimately leads to the derivation of of hyperplanes. This transformation ultimately leads to the derivation of
determining hyperplanes that possess crucial properties. These determining

The central outcome of this section is encapsulated in Theorem 1 , asserting that the set of determining median hyperplanes effectively determines the radius of the yolk centered at any point. Notably, this result is translatabie
across different origin points, thereby extending the notion of determining across different origin points, thereby extending the notion of determining
hyperplanes. It is important to note that while the determining hyperplanes hyperplanes. It is important to note that whilie the determining hyperplanes
form a polynomially bounded set for fixed dimensions, their union is typically
infinite. infinite.

Algorithm for yolk in fixed dimension
Then we present a polynomial algorithm for computing the yolk of a given set
of points. Additionally, we demonstrate that the algorithm can operate of pioits. Additionally, we demonstrate that the algorithm can operate
efficiently in logarithmic time with a polynomial number of parallel processors. eficicentit in logarithmict time with a polynomial number of parailel proces lemmata.
To address both non-degenerate and degenerate scenarios, we introduce
Lemma 2 and Theorem 2. Lemma 2 provides conditions under which a given point cannot be the center of the yolk. Speecifically, it asserts that if the
number of determining median hyperplanes number of determining median hyperplanes binding at a point is less than the
dimension plus one and certain conditions are met then the point cannot be dimension plus one and certain conditions are met, then the point cannot be
the yolk center. The proof involves demonstrating the existence of a direction that decreases the yolk radius when moving from such a point. Theorem 2 establishes a pseudo-polynomial time algorithm for computing the yolk,
extending from the non-degenerate to the degenerate case. This algorithm
 has a time complex
m is the dimension.
Furthermore, Corollary 2 extends the algorithm's applicability to the
degenerate case by showing that infinitesimal perturbation of degenerate case by showing that infinitesimal perturbations of a degenerate
contiguration yield infinitesimal changes in the yolk's center and radius configuration yield infinitesimal changes in the yol's's center and radius.
Corollary 3 demonstrates that the algorithm is highly parallelizable, allowing it Coroliary demonstrates that the algorithm is highy paralaleizable,
to run in logarithmic time with a polynomial number of processors.
Despite the theoretical complexity estimates, the practical application of the
algorithm may be limited due to its computational requirements. Thus, the subsequent section focuses on refining the algorithm for more feasible
execution, particularly in two-dimensional scenarios of moderate size.

Lemma 1. $r(x)$ is convex and continuous in x

 hyperplanes are bover is it ot the midpoint of the shorrest tien segment connecting two
|Veevermining median affine hulls Aft $\left(B_{1}\right)$, Aft $\left(B_{2}\right)$ where $\left|B_{1}\right|\left|\left|B_{2}\right| \leq m+1\right.$, then z is determining median
not the yolk center.
Lemma 3. Let V be any configuration and let \tilde{V} be a nondegenerate infnitesima adius and center of the volks of V and \hat{d} differ only from one of the yolk centers of V.

Improve in Performance and Time Bounds
An extended analysis suggests that, if a certain conjecture by Erdös, Lovász,
Simmons, and Straus holds true, the worst-case complexity could be further reduced to o($n^{\wedge} 3+\varepsilon$) for any $\varepsilon>0$. The algorithm's practical runtime is also estimated to be around $0\left(n^{\wedge} 3 \log n\right.$) based on empirical observations. Additionally, a variant of the algoorithm is prooposed, potentially offering sub-
cubic time e omple cubic time complexity in two dimens
remain an open research question.
The improvement involves refining the computation of equidistant points to affine hulls, particularly when a combination of ilines and points is present.
The revised algorithm selectively discards equidistant points that are farthe The revised algorithm selectively discards equidistant points that are tarthe
away from the corresponding affine hulls, as such points are unlikely to be away yrom te corresponding atine hulls, as such points are unlikely to be hulls, computing the closest equidiaistant point and d deternining the median
status of hyperplanes. The overall time complexity is estimated to be O(n status of hyperplanes. The overall time complexity is estimated to be $O(n$
$m \sim+m)$ with considerations for preprocessing extremal hyperplanes and $m^{\wedge} 2+m$, with considerations
handling various tuple scenarios.
The discussion highlights the potential for parallelizing the algorithm and mentions the possible use of preprocecssing techniques to achieve even
more efficient solutions. In particular, it is suggested that by utilize linea more efficieient solutions. In particular, it is suggested that by utilizing linea
programming and focusing on extremal hyperplanes, a sub-cubic time complexity might be attainable. This could significicantly ennance the
efficiency of yolk computations, especially in higher dimensions.

Figures above are 3D figures from different vantage points, that show a

 with a yyperplane HH that has normal $(0,1,0) ; \mathrm{By} 2=\{\times x\}$ with a hyperplane H 2 that has normal $(4 / 5,-3 / 5,0) ; \mathrm{B}, 3=\{x 4\}$ with a hyperplane H 3 that has normal
$(4 / 5,3 / 5,0)$. In further research, we will either prove that the counter-example $(4 / 5,3 / 5,0)$. In further research, we will either prove
has mistakes in itself or updated current algorithm.

