Maximin Fair Allocation

Authors
Taj Allamby

Affiliations

Research done in partnership with Dr. Mohit Singh and Georgia Tech's H. Milton Stewart School of Industrial and Systems Engineering. A big thank you to their help and sponsorship.

The Problem

We wish to find the best way to allocate an m number group of indivisible items to an n number group of group of indivisible items to an n number group of
individuals (called agents). For the purpose of our research, we worked with 3 agents.

Why do we care?

Solving this problem helps us find the best way to fairly divide items up between a group of people. For example, let's say you and two friends were presented with a group of items, and these items can't be split up. Using these methods, you all can easily find the best way to divide eeling cheated or like they got the "worst end of the stick"

Definitions

- Proportional Share

This is $1 / n$ of the total value of all items, with respect to the agents' valuation function.

- Abbreviated to PS
- Max maximum over all partitions into n bundles, of the smallest value of a bundle under the agent's valuation function.
Abbreviated to MMS
An MMS-allocation is an allocation in which every agent receives at least their MMS.

Solutions

We had two different methods we explored for finding the best MMS-allocation: Exhaustive Search and Atomic Exhaustive Search.

- Exhaustive Search

Baseline forch
For all possible allocations $A=(A 1, A 2, \ldots, A n)$, we define ρA to be minizN (vi(A)) M M Si). This tries alt highest value of pA .
Guarantees a value for ρ, making it optimal.

- Drawbacks
- Not clear to analyze what value of ρ is being - guaranteed

Runs in exponential time to m , as it goes over all Atomic Exhaustive Search
Partitions items into $n^{\wedge} n$ atomic bundles, where there is a possibility that some of the bundles may be empty.
Each of these atomic bundles is an intersection between one bundle from each agent.
Each atomic bundle is treated one individual bundle set.

Lets look at an example!

Three GA Tech students, Navy, Gold and White, are given six items and told to give a numerical score to each one: a pair of pants, a teddy bear, a pen, a soccer ball, a lava lamp, and a car. The table below shows these scores and placements.

We assume that n is 3 , and that j is $1 \leq r \leq 3,1 \leq s \leq 3$, and/or $1 \leq t \leq 3$. We wish to prove that MMS is greater than or equal to 1 .

x_{j}^{j} : value of item j to agent i From the given, we get $x_{t, \ldots, \text { : }}$ value of atomic bundes F

When finding the value oof apsaygers particulur to bundle, we add all of the posible 3 -number combinations for

Each agent can now crate 3 of these bundes, one for each of the 3 number of playerr. The lowst of these
3 bundele beomesthat
So we have that XMS >1.

Atomic Exhaustive Search Formula

Given MMS partitions for each player
$\min _{z} z$ and $\mathrm{MMS}_{1} \geq 1$
Either: $\sum_{j j 1} A_{1} x_{j}^{1} \leq z$ or $\sum_{j j, a_{1}} x_{j}^{2} \leq z$ or $\sum_{j i, h_{1}} x_{j}^{3} \leq z$
We can then write that $a_{1}+a_{2}+a_{3}=1$ so that $a_{i}\{0,1\}$
With this, we can revrite our summations.
\forall allocation
$\left.A_{1}, A_{2} A_{2}\right)$

Exhaustive Search Formula

Given n is the number of agents and m is the number of items. v_{j}^{i} is the value of item j for player i, where $i=1 \rightarrow n$ and $j=1 \rightarrow m$ There exists an assignment such that each agent receives $\frac{11}{12}$ of their MMS. $z_{j}^{i}=1$ if item j is given to agent i, and 0 otherwise.
We can now get $\sum_{j=1 \rightarrow m} z_{j}^{i} \times v_{j}^{i}$; the bundle value for player i.
Assignment Constraint: $\max _{z} \min _{i} \frac{\text { Assignment }_{i}(z)}{\operatorname{MMS}(2)} \leq \frac{1}{12}$
$\operatorname{MMS}(i)=\max _{y}$ assignment $\min _{i^{\prime}} \sum_{j}^{n} v_{j}^{i^{\prime}} \times y_{j}^{i^{\prime}}$
$\sum_{i=1}^{3} y_{j}^{i}=1$ where $y_{j}^{i} \in\{0,1\}$

		\ddots				2
	28	15	10	33	35	52
	28	21	1	57	5	43
	17	1	66	25	79	9

