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Implicit Model Agnostic Meta Learning
Motivation and Definition

Traditional reinforced learning (RL) runs into issues with 
 Needing a large amount of data
 General inefficiency 
 Balancing exploration (trying new actions) versus exploitation 

(using known actions that produce reward)

Meta-Reinforcement Learning

Divided into two parts, 
 Inner Loop
 The agent uses meta-knowledge from the outer loop for quick 

adaption to new tasks/environments
 Effectiveness is measured based on the agent’s performance

 Outer Loop
 Develop and tune meta-knowledge
 Examine how trends within tasks to enhance meta-knowledge
 Updates based on inner loop feedback

Why Meta Reinforcement Learning?

To answer this question we first need to address reinforcement learning itself- 
machine learning (ML) has three different methodologies:

State 𝑠𝑠 ∈ 𝑆𝑆
Take action 𝑎𝑎 ∈ 𝐴𝐴

Obtain reward 𝑟𝑟
Adapted state 𝑠𝑠′ ∈ 𝑆𝑆

Supervised Learning
 Data provided is 

labelled input and 
output

 Classification

Unsupervised Learning
 Data provided is 

unlabeled and is sorted 
through pattern 
recognition

 Clustering 

Reinforcement Learning
 An agent interacting 

with its environment 
 Learns through trial 

and error (reward or 
failure)

Reinforcement Learning Task Overview

Environment
Agent

Meta Learning

Task 1 Task 2 Task 1

𝑆𝑆1 𝑆𝑆1 𝑆𝑆1 𝑆𝑆1𝑆𝑆0 𝑆𝑆0 𝑆𝑆0 𝑆𝑆0𝑆𝑆0 𝑆𝑆0𝑆𝑆2
Episode Episode Episode Episode Episode Episode

Meta-Training

Meta training allows for a model to be exposed to multiple tasks 
with separate datasets to optimize performance for adaption.  

Model Agnostic Meta Learning or MAML was made to address some 
shortcomings in the basic formula of Meta-RL and continue innovation.

This algorithm was made to keep the number of learned parameters constant 
or enforce unneeded constraints on the model- accessible to all models and 
easily combined. The goal is to achieve rapid adaption using few data points.

Fig 2. Looking at the 
chart, it is evident that 
testing had a significant 
impact between 
rewards pre-testing and 
post-testing, showing 
its efficiency.

Fig 1. With 𝜃𝜃 as an agent, the path of 
growth is shown as learning tasks 
∇𝐿𝐿1,∇𝐿𝐿2, and ∇𝐿𝐿3also for 𝜃𝜃 to transform 
into 𝜃𝜃1∗,𝜃𝜃2∗, and 𝜃𝜃3∗.

Results
MAML is able to return the most accurate results in the least amount of 

time during a locomotion simulation task
 In 2D navigation, MAML performed as well as Oracle and well above the 

pretrained model within 2 gradient steps
 For RL, it had the overall best accuracy between 1 and 5 gradient updates 

and varying degrees of accuracy compared to other meta models

Implicit Model Agnostic Meta Learning (iMAML) was made to reduce 
computational cost and memory footprints. It does so through the use of 
implicit differentiation, saving only the solution to the inner loop optimizer  
and not the computational path to the solution itself.

Results
 Compared to MAML in few-shot image recognition, iMAML consistently 

uses less gradient descent steps and memory storage than MAML

Fig 3. This chart displays how 
the loss (difference between the 

model's predictions and the 
true values) decreases as the 

model continues running.

 It also produces fewer terminal errors during runtime

Meta Gradient Reinforced Learning, MGRL, sought to optimize the agent’s 
reward or cumulative reward through treating it like a parametric function 
with tuneable meta-parameters like the discount factor 𝛾𝛾  or the 
bootstrapping label 𝜃𝜃.
Results
 Any use of MGRL outpaced IMPALA in accuracy on all fronts
Meta tuning more than one factor significantly improved performance, 

and even more so with organic human starting positions

Deep Q Learning combines Q learning, a 
value-based reinforcement learning algorithm 
that learns the optimal action-value function 
named Q, and deep learning neural networks. 

This is an element that has become a large 
facet of RL and can be used for aspects of 
Meta RL in its inner loop.

Fig 6. Here it is being used on the side to play a 
classic Atari Game, Space Fighters

Fig 5. As the discount 
factor determines the 
urgency of a reward, the 
figure shows the model 
adjusting and looking for 
the most optimal factors 
in a model. 
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