Simulating Neighborhood Change: A Case Study of the Atlanta Beltline

Justin Xu, Matthew Lim, J. Carlos Martinez Mori, Patrick Kastner

Problem Statement

- Urban development projects generally seek to improve accessibility to amenities and economic opportunities. However, they can also have unintended consequences. To anticipate these issues ahead of time, we propose a computational simulation tool that can help urban policy makers better plan large-scale infrastructure projects.
- As a case study for our simulation framework, we focus on modeling neighborhood change in and around the Atlanta Beltline, an area that has historically had issues with gentrification.

The Modeling Framework: No Regret Dynamics

Initialize N agents randomly dispersed across a set of census tracts

At each timestep, agents randomly. pick a new tract to move to based on their current probability distribution and incurs a cost

Based on the incurred cost, the probability distribution for each agent is updated

The Cost Function

- Overall "cost" of agent relocating fl: affordabilitya(c) = {0, 1} to a particular census tract, is based on three sub-scores:
 - 1. Affordability (can an agent afford to live there?)
 - 2. Upkeep (does the tract exhibit signs of basic habitation/maintenance?
 - 3. Attractiveness
 - Community Ties (how similar is the agent's endowment compared to the endowments of its neighbors?)
 - Amenity Access (how many amenities are there?)
 - Beltline Score (proximity to the beltline)

(a) Only a certain number of agents may deem a tract affordable due to limited tract capacity.

(B) This score measures the occupancy level of a tract.

(c) This score takes into account 1) nearby amenities and 2) community fit.

Affordability_a(c) · Upkeep(c) · Attractiveness_a(c)^{1/m}

Preliminary Results

- We continue to refine details about the simulation framework, however initial results and data generated from our simulations look promising
- Agent probability distributions line up with amenity density, implying that agents are seeking out tracts with higher attractiveness.
- Higher-endowment agents choose to live in small subset of wealthy neighborhoods
- Lower-endowment agents show more uniform preference of less wealthy tracts

