Comparative Analysis of Bisection-Based Methods for Solving Chance Constrained Programs Swara Viswanadha (sviswanadha3@gatech.edu)

Nan Jiang (nanjiang@gatech.edu). Weijun Xie (wxie@gatech.edu)

				Num	erical C	ompari	son				
ame	1-7-5-3000-5										
	CVAR		ALSO-X #		Bisection-based-RHS			Bised	ction-based-Eps	silon	
ue	Objective Value	Time (s)	Objective Value	Time (s)	Improvement (%)	Objective Value	Time (s)	Improvement (%)	Objective Value	Time (s)	Improvement (%)
0.05	-17519.71	0.11 s	-17627.19	20.98	0.61%	-17626.27	30.95 s	0.61%	-17634.3	13.84 s	0.65%
0.1	-17600.76	0.16 s	-17731.37	21.05s	0.74%	-17731.21	31.40 s	0.74%	-17750.89	14.34 s	0.85%
0.15	-17657.97	0.18 s	-17824.63	21.41s	0.94%	-17824.5	31.60 s	0.94%	-17828.18	14.13 s	0.96%
0.2	-17706.8	0.20 s	-17895.74	21.35 s	1.07%	-17895.78	32.66 s	1.07%	-17898.95	15.18 s	1.09%
0.25	-17749.94	0.20 s	-17961.96	21.29s	1.19%	-17962.12	32.87 s	1.20%	-17965.65	15.33 s	1.22%
ame	1-7-5-3000-2										
	CVAR		ALSO-X#		Bisection-based-RHS			Bisection-based-Epsilon			
ue	Objective value	Time(s)	Objective value	Time(s)	% Improvement	Objective value	Time(s)	% Improvement	Objective value	Time(s)	% Improvement
0.05	-17511.49	0.09 s	-17629.33	21.06s	0.67%	-17629.16	31.58 s	0.67%	-17631.73	14.05 s	0.69%
0.1	-17596.69	0.15 s	-17736.99	21.20 s	0.80%	-17736.99	31.73 s	0.80%	-17744.41	14.68 s	0.84%
0.15	-17656.29	0.18 s	-17822.83	21.41s	0.94%	-17822.77	33.77 s	0.94%	-17822.23	14.97 s	0.94%
0.2	-17705.5	0.17 s	-17896.01	21.32s	1.08%	-17896.15	31.72 s	1.08%	-17900.75	15.31 s	1.10%
0.25	-17749.26	0.20 s	-17968.16	21.47 s	1.23%	-17968.39	32.75 s	1.23%	-17962.36	15.55 s	1.20%
ame	1-7-5-3000-3										
	CVAR		ALSO-X#			Bisection-based-RHS			Bisection-based-Epsilon		
value	Objective value	Time(s)	Objective value	Time(s)	% Improvement	Objective value	Time(s)	% Improvement	Objective value	Time(s)	% Improvement
0.05	-17512.7	0.59s	-17608.9	21.58	0.55%	-17609.44	32.47 s	0.55%	-17623.47	14.86s	0.63%
0.1	-17587.87	0.26s	-17720.15	22.40s	0.75%	-17720.75	32.58 s	0.76%	-17731.07	14.31s	0.81%
0.15	-17648.55	0.15s	-17818.74	21.73s	0.96%	-17818.58	32.76 s	0.96%	-17820.15	14.59 s	0.97%
0.2	-17698.94	0.15s	-17891.78	22.22s	1.09%	-17891.5	31.36 s	1.09%	-17889.61	14.80 s	1.08%
0.25	-17741.75	0.19s	-17954.14	22.59s	1.20%	-17954.21	32.48 s	1.20%	-17957.43	15.95 s	1.22%
ame	1-7-5-3000-4										
	CVAR		ALSO-X #		Bisection-based-RHS			Bisection-based-Epsilon			
lue	Objective Value	Time (s)	Objective Value	Time (s)	Improvement (%)	Objective Value	Time (s)	Improvement (%)	Objective Value	Time (s)	Improvement (%)
0.05	-17495.494	0.16s	-17596.83	21.63s	0.58%	-17597.37	31.76 s	0.58%	-17606.92	15.07 s	0.64%
0.1	-17578.57	0.19s	-17728.45	21.3s	0.85%	-17728.49	32.06 s	0.85%	-17748.885	13.98 s	0.97%
0.15	-17643.55	0.32s	-17828.14	21.92 s	1.05%	-17828.44	31.70 s	1.05%	-17827.14	14.73 s	1.04%
0.2	-17697.29	0.24s	-17901.14	21.28	1.15%	-17901.03	31.24 s	1.15%	-17902.49	15.09 s	1.16%
0.25	-17741.93	0.20s	-17964.87	22.04 s	1.26%	-17964.99	31.61 s	1.26%	-17964.65	15.48 s	1.26%

Results

Most optimal objective value. YELLOW= Quickest running time All three methods improve CVaR approximation About 90% of the time, **Bisection-based Epsilon** is the best

DC approximation

• These 4 methods can serve as the initial solutions for DC approximation, which is defined as

$$\min_{\{\boldsymbol{x}\in\boldsymbol{X}\}} \{\boldsymbol{c}^{\mathsf{T}}\boldsymbol{x}:\frac{1}{\hat{\varepsilon}}\mathbb{E}[g(\boldsymbol{x},\boldsymbol{\tilde{\xi}})+\hat{\varepsilon}]_{+}-\frac{1}{\hat{\varepsilon}}\mathbb{E}[g(\boldsymbol{x},\boldsymbol{\tilde{\xi}})]_{+}\leq 0\}$$

• After taking the derivative of the inner convex function, we follow a sub gradient-based algorithm to solve the DC approximation

$\mathbb{E}[g(\mathbf{x}, \tilde{\boldsymbol{\xi}})]_{+} \geq \mathbb{E}[g(\mathbf{x}^{(o)}, \tilde{\boldsymbol{\xi}})]_{+} + \partial_{\mathbf{x}^{(o)}} \mathbb{E}[g(\mathbf{x}^{(o$

Summary

Cvar approximation is employed to evaluate the potential losses in financial decision-making, serving as a critical tool for risk management. Investigating other methods that can improve CVaR, such as **Bisection-based Epsilon**, provides a more accurate estimate of potential extreme losses

Under type ∞- Wasserstein ambiguity set, **Bisection-based Epsilon** improves the CVaR approximation results 70% of the time across different epsilons and thetas over varying instances

$$(o), \tilde{\xi})]_+[x - x^{(o)}]_+$$

Initial Solutions CVaR Approximation **Bisection-based Epsilon Bisection- based RHS** ALSO-X#

Distributionally Robust Chance Constrained Programs

DRCCP's seek to determine optimal results that handle uncertain constraints and parameters, while taking into account all possible distributions in the Wasserstein ambiguity set.

Georgia Tech College of Engineering H. Milton Stewart School of Industrial and Systems Engineering

Objective Values over Iterations for Different Methods

Objective Values over Iterations for Different Methods CVaR Bisection-based-Epsilo Bisection-based-RHS - ALSOX 1000 800 400 600 Number of Iteration

Iterations	<u>Results</u>
Instances were	DC is deemed
tested across	unnecessary for
varying numbers of	improving these
iterations	initial solutions

$\inf_{e \in \mathcal{P}_{\infty}}$	$\mathbb{P}(\tilde{\boldsymbol{\xi}}:g(\boldsymbol{x},\boldsymbol{\xi}))$	$\tilde{\xi}) \leq$	0) ≥	$1-\varepsilon\}$
-------------------------------------	---	---------------------	------	-------------------

/alues	over Iterations for D	ifferent Methods		
			 CVaR Bisection-based-E Bisection-based-F 	psilon RHS
			+ ALSOX	
40	00 60 Number of Iterations	o 80	0	1000